Measuring ion transport activities in Xenopus oocytes using the ion-trap technique.
نویسندگان
چکیده
The ion-trap technique is an experimental approach allowing measurement of changes in ionic concentrations within a restricted space (the trap) comprised of a large-diameter ion-selective electrode apposed to a voltage-clamped Xenopus laevis oocyte. The technique is demonstrated with oocytes expressing the Na(+)/glucose cotransporter (SGLT1) using Na(+)- and H(+)-selective electrodes and with the electroneutral H(+)/monocarboxylate transporter (MCT1). In SGLT1-expressing oocytes, bath substrate diffused into the trap within 20 s, stimulating Na(+)/glucose influx, which generated a measurable decrease in the trap Na(+) concentration ([Na(+)](T)) by 0.080 +/- 0.009 mM. Membrane hyperpolarization produced a further decrease in [Na(+)](T), which was proportional to the increased cotransport current. In a Na(+)-free, weakly buffered solution (pH 5.5), H(+) drives glucose transport through SGLT1, and this was monitored with a H(+)-selective electrode. Proton movements can also be clearly detected on adding lactate to an oocyte expressing MCT1 (pH 6.5). For SGLT1, time-dependent changes in [Na(+)](T) or [H(+)](T) were also detected during a membrane potential pulse (150 ms) in the presence of substrate. In the absence of substrate, hyperpolarization triggered rapid reorientation of SGLT1 cation binding sites, accompanied by cation capture from the trap. The resulting change in [Na(+)](T) or [H(+)](T) is proportional to the pre-steady-state charge movement. The ion-trap technique can thus be used to measure steady-state and pre-steady-state transport activities and provides new opportunities for studying electrogenic and electroneutral ion transport mechanisms.
منابع مشابه
Regulation of CFTR chloride channel trafficking by Nedd4-2: role of SGK1
Introduction: The cystic fibrosis transmembrane conductance regulator (CFTR) chloride (Cl−) channel is an essential component of epithelial Cl− transport systems in many organs. CFTR is mainly expressed in the lung and other tissues, such as testis, duodenum, trachea and kidney. The ubiquitin ligase neural precursor cells expressed developmentally down-regulated protein 4-2 (Nedd4-2...
متن کاملXenopus borealis as an alternative source of oocytes for biophysical and pharmacological studies of neuronal ion channels
For the past 30 years, oocytes from Xenopus laevis have been extensively used to express and characterise ion channels in an easily controlled environment. Here we report the first use of oocytes from the closely related species Xenopus borealis as an alternative expression system for neuronal ion channels. Using the two-electrode voltage-clamp technique, we show that a wide variety of voltage-...
متن کاملQuantification of Melittin in Iranian Honey Bee (Apis mellifera meda) Venom by Liquid Chromatography-electrospray Ionization-ion Trap Tandem Mass Spectrometry (LC-ESI-IT-MS/MS)
The current research aimed to quantify melittin (MEL) in Iranian honey bee (Apis mellifera meda) venom. To this end, a liquid chromatography-electrospray ionization-ion trap tandem mass spectrometry (LC-ESI-IT-MS/MS) approach was employed. Melittin is the main toxic peptide of honey bee venom with various biological and pharmacological activities. It was extracted with...
متن کاملAtHKT1;1 Mediates Nernstian Sodium Channel Transport Properties in Arabidopsis Root Stelar Cells
The Arabidopsis AtHKT1;1 protein was identified as a sodium (Na⁺) transporter by heterologous expression in Xenopus laevis oocytes and Saccharomyces cerevisiae. However, direct comparative in vivo electrophysiological analyses of a plant HKT transporter in wild-type and hkt loss-of-function mutants has not yet been reported and it has been recently argued that heterologous expression systems ma...
متن کاملExpressing and characterizing mechanosensitive channels in Xenopus oocytes.
The oocytes of the African clawed frog (Xenopus laevis) comprise one of the most widely used membrane protein expression systems. While frequently used for studies of transporters and ion channels, the application of this system to the study of mechanosensitive ion channels has been overlooked, perhaps due to a relative abundance of native expression systems. Recent advances, however, have illu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Cell physiology
دوره 295 5 شماره
صفحات -
تاریخ انتشار 2008